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Abstract: In this paper, a joint diagonalization based two dimensional (2D) direction of departure
(DOD) and 2D direction of arrival (DOA) estimation method for a mixture of circular and strictly
noncircular (NC) sources is proposed based on an L-shaped bistatic multiple input multiple output
(MIMO) radar. By making full use of the L-shaped MIMO array structure to obtain an extended virtual
array at the receive array, we first combine the received data vector and its conjugated counterpart
to construct a new data vector, and then an estimating signal parameter via rotational invariance
techniques (ESPRIT)-like method is adopted to estimate the DODs and DOAs by joint diagonalization
of the NC-based direction matrices, which can automatically pair the four dimensional (4D) angle
parameters and solve the angle ambiguity problem with common one-dimensional (1D) DODs
and DOAs. In addition, the asymptotic performance of the proposed algorithm is analyzed and
the closed-form stochastic Cramer–Rao bound (CRB) expression is derived. As demonstrated by
simulation results, the proposed algorithm has outperformed the existing one, with a result close to
the theoretical benchmark.

Keywords: MIMO radar; four dimensional (4D) angle estimation; noncircular signal; joint
diagonalization; stochastic Cramer–Rao bound (CRB)

1. Introduction

A multiple input multiple output (MIMO) radar can provide increased degrees of freedom
by exploiting waveform diversity, with an enhanced performance for spatial resolution, parameter
estimation, and target detection [1–7]. In MIMO radar, by focusing on both directions of departure
(DODs) and directions of arrival (DOAs), target localization [8–10] is an important issue that has drawn
significant attention in recent years.

For MIMO radar systems based on one dimensional (1D) uniform linear arrays (ULAs),
in reference [11], by employing the property of Kronecker product, a reduced-dimension multiple signal
classification (MUSIC) method was developed, and only 1D search was required to locate the DOD
and DOA of the target. A double polynomial root MUSIC method was proposed to jointly estimate
the DOA and DOD in [12]. To avoid an exhaustive search over the whole angle space, joint DOA and
DOD estimation methods were proposed based on the computationally efficient estimating signal
parameter via rotational invariance techniques (ESPRIT) method with pairing required in reference [13]
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and pairing-free in reference [14], respectively. Furthermore, joint diagonalization-based ESPRIT
method was presented in reference [15], where a closed-form expression for both DOA and DOD
was obtained and automatically paired. For MIMO radar systems based on planar arrays, a method
for joint estimation of 2D-DOD and 2D-DOA was presented in references [16–18] by transforming
the four dimensional (4D) angle estimates into four 1D estimates without any pairing procedures.
In addition, the method in reference [17] can also work well when common 1D angles are presented by
joint diagonalization, but the method in reference [16] cannot. Based on the electromagnetic vector
sensors (EVSs), 2D-DODs and 2D-DOAs were estimated using an ESPRIT-based method for the bistatic
MIMO radar, with an additional optimization function for pair matching [18].

However, the above-mentioned methods for MIMO radar failed to exploit some potential
information of radar signals, such as noncircularity [19–23], which could lead to significant improvement
in its performance. With the aid of noncircular (NC) property of the signals, a series of angle estimation
methods [24–26] for bistatic MIMO radar were proposed, which can improve the accuracy of angle
estimation and detect more signals. In reference [24], with NC incoming signals, a combined ESPRIT
and MUSIC approach was applied to MIMO radar for joint estimation of DOA and DOD by decoupling
the 2D direction findings into two 1D ones. In reference [25], a kind of ESPRIT algorithm of low
complexity was proposed with real-valued computation by Euler’s formula, for MIMO radar with
NC signals employed, but it requires additional cost function to avoid ambiguity. For a more general
situation with the coexistence of noncircular and circular signals, ESPRIT and unitary ESPRIT were
employed in reference [26] for MIMO radar; however, no theoretical error performance analysis was
provided for the proposed method, and the derived stochastic Cramer–Rao bound (CRB) does not
have a closed-form expression.

In this paper, a NC ESPRIT-like method based on joint diagonalization is proposed to estimate
2D-DOD and 2D-DOA for an L-shaped bistatic MIMO radar. The main contributions of the work are
given as follows.

(1) A general model including a mixture of circular and strictly noncircular sources is built for the
L-shaped bistatic MIMO radar by stacking received data vector and its conjugated counterpart.
Four NC-based direction matrices are then constructed and by joint diagonalization an ESPRIT-like
algorithm is developed employing four block selection matrices.

(2) The proposed algorithm can work in the case of common 1D DODs and DOAs, and automatically
pair the 4D angle parameters.

(3) The asymptotic performance of the proposed algorithm is analyzed, and the stochastic Cramer–Rao
bound (CRB) for the problem is derived with a closed-form expression to serve as the
performance benchmark.

The rest of this paper is organized as follows. Section 2 introduces the general mixed signal
model for MIMO radar. The proposed algorithm is described in detail in Section 3. The asymptotic
performance of the proposed algorithm and the closed-form stochastic CRB are analyzed in Section 4.
Simulation results are presented in Section 5, and conclusions are drawn in Section 6.

Notations: (·)∗, (·)T, (·)−1, and (·)H denote conjugate, transpose, inverse, and conjugate transpose,
respectively. E(·) and var(·) are the expectation and variance operations, respectively; Re(·) and Im(·)

denote the real and imaginary parts; diag(·) denotes the diagonal matrix; blkdiag(·) represents the
generation of a block diagonal matrix; ⊗ and � are the Kronecker and Hadamard products, respectively;
Ik denotes the k-dimensional identity matrix; γk represents the k-dimensional exchange matrix; 0k×l
and 1k×l denote the k× l zero matrix and all-one matrix, respectively; arg(·) is the phase operation; and
tr(·) represents the trace of a matrix.

2. General Signal Model

Consider a bistatic MIMO radar system with an L-shaped antenna array for signal transmission
and a second L-shaped antenna array for signal reception, as shown in Figure 1. It is assumed that the
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target fluctuates according to the Swerling II model [1–4], i.e., the reflection coefficient changes from
pulse to pulse. The transmit array has a total number of M = M1 + M2 − 1 antennas, with M1 and M2

antennas located on the X and Y axes, respectively, and the receive array has N = N1 +N2 − 1 antennas,
of which N1 and N2 elements are located on the X′ and Y′ axes, respectively. The four subarrays are
all uniform linear arrays (ULAs) with omnidirectional antennas and a half-wavelength inter-element
spacing d. The M transmitted waveforms are supposed to be circular (QPSK)- or strictly noncircular
(BPSK)-modulated. The targets that slowly move are far field with their directions parameterized
as (θk1,θk2,θk3,θk4), where (θk1,θk2) is the 2D-DOD of the kth target and (θk3,θk4) is its 2D-DOA.
The received signals reflected by K targets at the receive array can be written as

r(l, t) =
K∑

k=1

αk(t)a(θk1,θk2)b
T(θk3,θk4)u(l, t) + w(l, t) (1)

where ak = a(θk1,θk2) and bk = b(θk3,θk4) are the M × 1 transmit array and N × 1
receive array manifold vectors, with ak = [e jηdM2 cosθk2 , · · · , 1, · · · , e jηdM1 cosθk1 ]

T
and bk =

[e jηdN2 cosθk4 , · · · , 1, · · · , e jηdN1 cosθk3 ]
T

, η = 2πλ−1, and u(τ, t) = [uT
1 (τ, t), · · · , uT

M(τ, t)]T; um(τ, t) is
the mth transmitter antenna signal that is supposed to be circular (QPSK)- or strictly noncircular
(BPSK)-modulated, αk(t) is the reflection coefficient of the kth target depending on the target radar cross
section (RCS), and w(τ, t) is the additive white Gaussian noise vector with zero mean and variance σ2

n.
τ and t indicate the time within pulse (fast time) and the index of radar pulse (slow time), respectively.
Thus, the output of the matched filters at the receive array can be expressed as

ym(t) =
K∑

k=1
akbT

k αk(t)rk(t)



0
...
0
1
0
...
0


+ wm(t)

=
K∑

k=1
akbk,mαk(t)rk(t) + wm(t)

=
K∑

k=1
akbk,msk(t) + wm(t)

(2)

where bk,m denotes the mth element of the transmitter steering vector, sk(t) = αk(t)rk(t) is circular or
strictly noncircular baseband signal, and wm(t) is the noise vector after matched filter. As for strictly
noncircular baseband signal, the sk(t) can also be written as sk(t) = sn,k(t)e jϕk/2 [19–23], where sn,k(t)
is real-value and ϕk/2 is arbitrary phase shifts that can be different for each signal but are constant
with time.
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Figure 1. A diagram for the L-shaped multiple input multiple output (MIMO) array structure. 
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Figure 1. A diagram for the L-shaped multiple input multiple output (MIMO) array structure.

Let x(t)= [yT
1 (t), . . . y

T
M(t)

]T
be the output of all the received signal, which is shown as

x(t) = C(θk1,θk2,θk3,θk4)s(t) + n(t) (3)

where x(t) is the MN × 1 data vector, C = [c1, c2, · · · , cK]
T is the MN × K extended virtual array

manifold matrix, and ck = bk ⊗ ak is the MN × 1 extended virtual array manifold vector. n(t) =

[n1(t), · · · , nMN(t)]
T is the MN × 1 additive white Gaussian noise vector with zero mean and variance

σ2
n. s(t) = [s1(t), · · · , sK(t)]

T is the K × 1 mixed signal vector, which contains Kn strictly noncircular
signals sn,k(t), k = 1, 2, · · · , Kn and Kc circular signals sc,k(t), k = 1, 2, · · · , Kc, satisfying K = Kn + Kc.
As shown in [27,28], each of the circular signals can be separated into two uncorrelated strictly
noncircular signals. Thus, s(t) can be rewritten as

s(t) =

 Φ1 0
0

[
IKc jIKc

] 


sn(t)
sr

c(t)
sq

c(t)

 = Φs̃(t) (4)

where Φ1 = diag
(
e jϕ1/2, · · · , e jϕKn /2

)
is the Kn ×Kn arbitrary phase matrix corresponding to the strictly

noncircular signals sn(t); furthermore, Φ is of size K×K′ with K′ = Kn + 2Kc, and the K′ × 1 real-valued
vector s̃(t) contains the symbols of the Kn strictly noncircular signals sn(t) cum the Kc real parts sr

c(t)
and Kc imaginary parts sq

c(t) of the circular signals sc(t). Therefore, the extended virtual array manifold
matrix C can be rewritten as

C =
[

Cn Cc
]

(5)

where Cn and Cc represent the MN × Kn and MN × Kc array manifold matrix related to strictly
noncircular and circular signals, respectively.

According to Equations (4) and (5), the data vector of Equation (3) can be expressed as

x(t) = CΦs̃(t) + n(t)
= CnΦ1sn(t) + Ccsc(t) + n(t)

(6)

For notional convenience, the angle pair (θk1,θk2,θk3,θk4) and time t will be omitted in the
following sections.
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3. The Proposed Algorithm

In order to utilize the noncircularity characteristic of the strictly noncircular signals and the virtual
noncircularity characteristic of the circular signals, a new data matrix is constructed by stacking the
original data matrix X = [x(1), · · · , xMN(T)] (T is the number of snapshots) and its corresponding
conjugated counterpart as

Y =

[
X

γMNX∗

]
=

 CΦS̃
γMNC∗Φ∗S̃

∗

+ [
N

γMNN

]
= C̃S̃ + Ñ (7)

where

C̃ =

[
CΦ

γMNCΦ

]
=

 CnΦ1 Cc
[

IKc jIKc

]
γMNC∗nΦ∗1 γMNC∗c

[
IKc − jIKc

]  (8)

is the 2MN × K′ extended array manifold matrix, Ñ =

[
N

γMNN

]
is the 2MN × T noise matrix with

N = [n(1), · · · , nMN(T)], and S̃ = S̃
∗

with S̃ = [̃s(1), · · · , s̃MN(T)].
Performing singular value decomposition (SVD) on Y, one can get

Y =
(

Us Un
)( Σs 0

0 Σn

)(
VH

s
VH

n

)
= UsΣsVH

s + UnΣnVH
n (9)

where the 2MN ×K′ matrix Us and the T ×K′ matrix Vs are the left and right singular signal subspace
associated with corresponding left and right singular values matrices Σs = diag(λ1,λ2, · · · ,λK′) and
Σn = diag(λK′+1,λK′+2, · · · ,λ2MN), respectively, while the 2MN × (2MN −K′) matrix Un and the
T × (2MN −K′) matrix Vn are the left and right singular noise subspace, respectively.

By defining a new matrix Es as Es = UsΣs, and the following selection matrices

J1a =
[

0(a−1)×(M−a) 0(a−1)×1 I(a−1)

]
, a = M1, N1 (10)

J2a =
[

0(a−1)×(M−a) I(a−1) 0(a−1)×1

]
, a = M1, N1 (11)

J1b =
[

I(b−1) 0(b−1)×1 0(b−1)×(M−b)

]
, b = M2, N2 (12)

J2b =
[

0(b−1)×1 I(b−1) 0(b−1)×(M−b)

]
, b = M2, N2 (13)

the selection matrices displayed in Figure 2 for θkl(l = 1, 2) of the mixed strictly noncircular and
circular signals can be expressed as

Kl1 = blkdiag
(
Jl1,γ(Ml−1)MJl2γMN

)
, l = 1, 2 (14)

Kl2 = blkdiag
(
Jl2,γ(Ml−1)MJl1γMN

)
, l = 1, 2 (15)

where J11 = IN ⊗ J1M1
, J12 = IN ⊗ J2M1

, J21 = IN ⊗ J1M2
, and J22 = IN ⊗ J2M2

. Similarly, as shown in
Figure 3, the selection matrices for θkl(l = 3, 4) of the mixed signals can be expressed as

Kl1 = blkdiag
(
Jl1,γ(Nl−1)NJl2γNM

)
, l = 3, 4 (16)

Kl2 = blkdiag
(
Jl2,γ(Nl−1)NJl1γNM

)
, l = 3, 4 (17)

where J31 = J1N1
⊗ IM, J32 = J2N1

⊗ IM, J41 = J1N2
⊗ IM, and J42 = J2N2

⊗ IM.
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Instead of complex peak-seeking methods [29–32], following the principle of the ESPRIT
algorithm [33–35], we define the direction matrices Gl related to θkl(l = 1, 2, 3, 4) as follows

Gl = (Kl2Es)
+Kl1Es = EΘlEH, l = 1, 2, 3, 4 (18)

where
Θl = diag

(
e j2πλ−1d cosθ1l , · · · , e j2πλ−1d cosθK′l

)
= diag(η1l, · · · , ηK′l)

(19)

is a diagonal matrix and E is the K′ ×K′ unitary matrix.
It can be seen that Gl in Equation (18) satisfies the joint diagonalization condition. Then, we define

a set G = {G1, G2, G3, G4} and use the joint diagonalization method in [28,36,37] to obtain the unitary
matrix E = [e1, e2, · · · , eK′ ], where ek is the eigenvector of G. It should be mentioned that the proposed
method does not require the 4D angle pairing process, as the eigenvalues of G maintain a one-to-one
correspondence in the joint diagonalization process. Then, the eigenvalues of G can be computed as
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ηkl = eH
k Glek, k = 1, 2, · · · , K′, l = 1, 2, 3, 4 (20)

Thus, it can be easily obtained that

θkl = arccos
(
λarg(ηkl)

2πd

)
, k = 1, 2, · · · , K′, l = 1, 2, 3, 4 (21)

It should be noted that each circular signal is treated as two strictly noncircular signals, and K′

angle estimates are obtained for the mixed targets. However, only K actual 2D-DODs and 2D-DOAs are
present, so the circular and strictly noncircular signals can be discriminated according to the number
of repetitions of the angle estimates. Then, the two estimated angles of the circular signal are reliable,
and θkl,c(l = 1, 2, 3, 4) can be obtained by calculating the average of two identical estimates

θkl,c =
θ1

kl,c + θ2
kl,c

2
, k = 1, · · · , Kc (22)

Till now, the proposed method has provided closed-form of 2D-DOA and 2D-DOD angle estimates
that are automatically paired and summarized in Table 1.

Table 1. Summary of the proposed method.

Input: {x̂(t)}t=1,. . . T : T snapshots of the new constructed array vector.
Output: {θ̂kl}k=1,. . . K,l=1,2,3,4: pair-free 2D-DODs and 2D-DOAs of K mixed signals

Step 1: Perform SVD on Ŷ to get Ûs, and then compute Ês = ÛsΣ̂s;
Step 2: Define a set Ĝ =

{
Ĝ1, Ĝ2, Ĝ3, Ĝ4

}
according to Equation (18)

Step 3: Implement the joint diagonalization to the set Ĝ to obtain the unitary matrix Ê by a series of Givens
rotations;
Step 4: Compute the eigenvalues η̂kl according to Equation (20), and then compute θ̂kl according to
Equation (21);
Step 5: Compute the 2-D DODs and 2-D DOAs of circular signals according to Equation (22).

Remark 1. The major computational effort the proposed algorithm contains SVD of Ŷ, pseudo
inverse operation for Gl in Equation (18), and joint diagonalization of the set Ĝ. Performing SVD of Ŷ
requires the amount of complex multiplications of O

(
(2MN)2L

)
, the pseudo inverse in Equation (18)

costs O
(
4(2MN)3

)
, and jointly diagonalizing the set Ĝ is of O

(
4(K′)3

)
. The total computational

complexity of the proposed algorithm is about O
(
(2MN)2L + 4(2MN)3 + 4(K′)3

)
.

Remark 2. Compared to the Xia’s algorithm [17], the proposed algorithm exploits the redundancy
existing in the noncircular signals, which improves the array virtual aperture. Additionally, the
maximum numbers of detectable signals by the proposed algorithm is based on the new data vetor
in Equation (7) as well as the matrices Kl1 and Kl2, l = 1, 2 in Equations (14) and (15) for 2D DODs,
Kl1 and Kl2, l = 3, 4 in Equations (16) and Equation (17) for 2D DOAs, which are shown in Table 2
compared to Xia’s algorithm. Obviously, the proposed algorithm can distinguish more mixed signals
than Xia’s algorithm.

Table 2. Maximum number of detection signals.

Algorithm Angle Maximum Number

Proposed algorithm
DOD Kn + 2Kc = min

{
2N(M1 − 1), 2N(M2 − 1)

}
DOA Kn + 2Kc = min

{
2M(N1 − 1), 2M(N2 − 1)

}
Xia’s algorithm

DOD Kn + Kc = min
{
N(M1 − 1), N(M2 − 1)

}
DOA Kn + Kc = min

{
M(N1 − 1), M(N2 − 1)

}
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4. Performance Analysis

4.1. Asymptotic Performance Analysis

In this section, the asymptotic performance of the proposed algorithm is derived, which is
consistent with the first-order analysis done by Rao [38] and the backward error analysis of Li [39].
For the ESPRIT-like subspace algorithm, we need to analyze subspace perturbation as a criterion for
evaluation. Therefore, we can perform SVD on the noiseless extended observation model Ỹ as follows:

Ỹ =
(

Us′ Un′
)( Σs′ 0

0 Σn′

)(
VH

s′

VH
n′

)
(23)

In line with the first-order approximation principle [38,39] of eigenvalues in Equation (18), we get

δηkl ≈ eH
k δGlek, k = 1, 2, · · · , K′, l = 1, 2, 3, 4

= eH
k (Kl2Uy)

+(Kl1 − ηklKl2)δUyek
(24)

where
Uy = Us′Σs′ (25)

δUy = δUs′Σs′ (26)

δUs′ = Un′UH
n′ÑVs′Σ

−1
s′ (27)

According to Equations (26) and (27), Equation (24) can be rewritten as

δηkl ≈ eH
k (Kl2Uy)

+(Kl1Un′ − ηklKl2Un′)UH
n′ÑVs′ek (28)

By performing the first-order Taylor series expansion on Equation (21), the perturbation of θkl can
be expressed as

δθkl = ξklIm
(
δηkl

ηkl

)
(29)

where ξkl = λ(2πd sinθkl)
−1. The error-variances of the estimated 2D-DODs and 2D-DOAs of the

mixed sources are

var(δθkl) = ξ2
klvar

{
Im

(
δηkl

ηkl

)}
(30)

It is worth noting here that Equation (30) can only calculate the mean-squared error for the strictly
noncircular signals, while the variances of the four estimated angles for the kth k = 1, 2, · · · , Kc circular
signal are calculated as

var(δθkl,c) = var
(
δθ1

kl,c+δθ
2
kl,c

2

)
=

var(δθ1
kl,c)+var(δθ2

kl,c)+2E(δθ1
kl,cδθ

2
kl,c)

4

(31)

4.2. Stochastic Cramer–Rao Bound

The CRB, which has a lower bound on the variance of any unbiased estimator, is often adopted for
the performance benchmark. In reference [20], the CRB is analyzed by assuming that the set of incident
sources are all strictly noncircular, while the CRB analyzed in reference [40], provided that the incident
sources are all circular. However, when considering a scenario that both the strictly noncircular and
circular sources coexist, the two signal models mentioned above are not applicable. In this section,
the stochastic closed-form CRB is first derived for the estimates of 2D-DOA and 2D-DOA of the mixed
strictly noncircular and circular sources based on the L-shaped bistatic MIMO radar.
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Here, we focus on a real-valued vector of the interest parameters ω =

[θT
n1,θT

n2,θT
n3,θT

n4,ψT
n ,θT

c1,θT
c2,θT

c3,θT
c4]

T
with θn1 = [θn1,1, · · · ,θn1,Kn ]

T, θn2 = [θn2,1, · · · ,θn2,Kn ]
T,

θn3 = [θn3,1, · · · ,θn3,Kn ]
T, θn4 = [θn4,1, · · · ,θn4,Kn ]

T, ψn = [ϕn,1, · · · ,ϕn,Kn ]
T, θc1 =

[θc1,Kn+1, · · · ,θc1,K]
T, θc2 = [θc2,Kn+1, · · · ,θc2,K]

T, θc3 = [θc3,Kn+1, · · · ,θc3,K]
T, and θc4 =

[θc4,Kn+1, · · · ,θc4,K]
T. Then, followed by references [40–43], the (p, q)th entry of the (5Kn + 4Kc) ×

(5Kn + 4Kc) CRB matrix for the parameterω estimates is given by

[CRB−1(ω)]p,q =
2L
σ2

n
Re

{
tr
[
∂A
∂ωp

P⊥A
∂A
∂ωq

Q
]}

(32)

where ωk is the kth element ofω,
A =

[
CnΦ1 Cc

]
(33)

P⊥A = I−A
(
AHA

)−1
AH (34)

Q = PsAHR−1APs =

[
Q1 Q2
Q3 Q4

]
(35)

and Q1, Q2, Q3, and Q4 are sizes of Kn ×Kn, Kn ×Kc, Kc ×Kn, and Kc ×Kc matrices, respectively,

Ps = E(
[

sn

sc

][
sn

sc

]H

) (36)

R = E[xxH] (37)

Define

Dn =

[
Dθn1 , Dθn2 , Dθn3 , Dθn4 ,

j
2

CnΦ1, 0MN×4Kc

]
(38)

Dc =
[
0MN×5Kn , Dθc1 , Dθc2 , Dθc3 , Dθc4

]
(39)

with Dθn1 =
[
∂Cn
∂θn1,1

Φ1, . . . , ∂Cn
∂θn1,Kn

Φ1

]
, Dθn2 =

[
∂Cn
∂θn2,1

Φ1, . . . , ∂Cn
∂θn2,Kn

Φ1

]
, Dθ3 =[

∂Cn
∂θn3,1

Φ1, . . . , ∂Cn
∂θn3,Kn

Φ1

]
, Dθn4 =

[
∂Cn
∂θn4,1

Φ1, . . . , ∂Cn
∂θn4,Kn

Φ1

]
, Dθc1 =

[
∂Cc

∂θc1,Kn+1
, . . . , ∂Cc

∂θc1,K

]
,

Dθc2 =
[

∂Cc
∂θc2,Kn+1

, . . . , ∂Cc
∂θc2,K

]
, Dθc3 =

[
∂Cc

∂θc3,Kn+1
, . . . , ∂Cc

∂θc3,K

]
, and Dθc4 =

[
∂Cc

∂θc4,Kn+1
, . . . , ∂Cc

∂θc4,K

]
.

After some simplifications, we obtain the closed-form expression for the CRBω as

CRB(ω) =
σ2

n
2L

[
CRB1(ω) CRB2(ω)

CRB3(ω) CRB4(ω)

]−1

(40)

where
CRB1(ω) = Re

{
Jn

(
DH

n P⊥ADn
)
JT

n �
(
15 ⊗ 1T

5 ⊗QT
1

)}−1
(41)

CRB2(ω) = Re
{
Jn

(
DH

n P⊥ADc
)
JT

c �
(
14 ⊗ 1T

5 ⊗QT
3

)}−1
(42)

CRB3(ω) = Re
{
Jc

(
DH

c P⊥ADn
)
JT

n �
(
15 ⊗ 1T

4 ⊗QT
2

)}−1
(43)

CRB4(ω) = Re
{
Jc

(
DH

c P⊥ADc
)
JT

c �
(
14 ⊗ 1T

4 ⊗QT
4

)}−1
(44)

with Jn =
[

I5Kn 05Kn×4Kc

]
, Jc =

[
04Kc×5Kn I4Kc

]
, 15 = [1, 1, 1, 1, 1] and 14 = [1, 1, 1, 1].

It should be noted that the CRB(ω) will degenerate into CRB1(ω) and CRB4(ω), which
corresponds to the incident sources are all strictly noncircular and circualr sources, respectively,
namely, CRB(ω) = CRB1(ω) and CRB(ω) = CRB4(ω).
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5. Simulation Results

In this part, we evaluate the effectiveness of the proposed method in terms of several simulations.
The proposed algorithm is compared with Xia’s algorithm [17], asymptotic performance analysis
(Proposed asy.) in Equations (30) and (31), and the derived stochastic CRB in Equation (40). We use

the root mean square error (RMSE) given by RMSE_DOD =

√
1

KMc

K∑
k=1

Mc∑
m=1

[(
θ̂k1 − θk1

)2
+

(
θ̂k2 − θk2

)2
]

and RMSE_DOA =

√
1

KMc

K∑
k=1

Mc∑
m=1

[(
θ̂k3 − θk3

)2
+

(
θ̂k4 − θk4

)2
]

as the performance criterion, where Mc

is the number of Monte-Carlo trials. The first experiment is based on an L-shaped MIMO array with
N1 = 3, M1 = M2 = N2 = 2, and for the next two experiments, M1 = M2 = N1 = N2 = 3, d is
half wavelength.

Experiment 1. In the first experiment, we verify that the mixture of strictly noncircular
and circular signals can be estimated successfully by the proposed method with the increasing
of the maximum number of detectable signal in comparison with Xia’s method. Here,
we consider six uncorrelated targets in the experiment, which have five BPSK signals with
direction pairs

(
70
◦

, 105
◦

, 70
◦

, 105
◦
)
,
(
60
◦

, 80
◦

, 60
◦

, 80
◦
)
,
(
85
◦

, 90
◦

, 85
◦

, 90
◦
)
,
(
100

◦

, 70
◦

, 100
◦

, 70
◦
)
, and(

110
◦

, 100
◦

, 110
◦

, 100
◦
)
, and one QPSK signal with direction pairs

(
120

◦

, 85
◦

, 120
◦

, 85
◦
)
. Then, we

have Kn + 2Kc = 7, min
{
2N(M1 − 1), 2N(M2 − 1)

}
DOD = 8, and min

{
2M(N1 − 1), 2M(N2 − 1)

}
DOA = 6.

The signal-to-noise ratio (SNR) is set at 25 dB, the number of snapshots is 500, and Mc = 100. Figures 4
and 5 show the 2D-DODs and 2D-DOAs scattergram of six mixed signals, respectively. It can be seen
that the proposed algorithm can estimate the 2D-DODs and 2D-DOAs of six targets correctly, while the
algorithm in reference [17] fails to work, because the former can detect more signals with available
noncircular information. It should also be noted that the 2D-DOA estimation for QPSK signal is slightly
inaccurate, because the number of mixed targets has exceeded the maximum number that the 2D-DOA
can detect, but it still can roughly estimate the 2D-DOA of QPSK signal.Sensors 2020, 20, x FOR PEER REVIEW 12 of 17 
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Experiment 2. In the second experiment, the performance of the proposed algorithm is investigated
with SNR varying from −5 dB to 15 dB. We consider four uncorrelated mixed signals with direction
pairs

(
60
◦

, 50
◦

, 60
◦

, 50
◦
)
,
(
70
◦

, 50
◦

, 80
◦

, 70
◦
)
,
(
70
◦

, 60
◦

, 80
◦

, 90
◦
)
, and

(
80
◦

, 70
◦

, 100
◦

, 90
◦
)
. We consider the

cases of one, two, three, and four BPSK signals, and the remaining signals are QPSK, respectively.
The number of snapshots is 300 and Mc = 2000. In Figures 6 and 7, the estimation performance of
the proposed algorithm is shown to be superior to Xia’s algorithm for both 2D-DOD and 2D-DOA
estimation in all four cases. From case 1 to case 4, the performance of the proposed algorithm is
improved in turn, as more noncircular information is available. In addition, the RMSEs of the proposed
algorithm vary almost in accordance with their asymptotic error-variances, and both of them are close
to the CRBs, especially for case 3 and case 4.
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Experiment 3. In the third experiment, we investigate the performance with respect to a varying
number of snapshots ranging from 50 to 950. The SNR is set at 5Db, and the other parameters are the
same as Experiment 2. As shown in Figures 8 and 9, we can draw similar conclusions as Experiment 2,
that the proposed algorithm has better performance with the number of snapshots increases in all four
cases, again outperforms the Xia’s method, and is close to the theoretical benchmark.
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6. Conclusions 
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6. Conclusions

Based on the joint diagonalization technique, a 2D-DOD and 2D-DOA estimation algorithm for
mixed strictly noncircular and circular signals in L-shaped bistatic MIMO radar is proposed in this
paper. It utilizes the noncircularity characteristic to construct a virtual array, and then derives the
joint diagonalization-based NC-ESPRIT method to achieve automatic pairing and the identification
of the estimated 4D angles of mixed signals. The asymptotic performance of the proposed method
as well as the stochastic CRB for the mixed signals scenario is also derived. Simulation results show
that the proposed algorithm has a better angle estimation performance than the algorithm without
noncircularity characteristics.
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